login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080226
Number of deficient divisors of n.
10
1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 4, 2, 5, 4, 4, 2, 5, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 6, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 6, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 7, 2, 6, 2, 4, 6, 6, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 7, 2, 8, 4, 6, 4, 4, 4, 7, 2, 6, 6, 7, 2, 6, 2, 7, 8
OFFSET
1,2
COMMENTS
Number of divisors d of n with sigma(d)<2*d (sigma = A000203).
LINKS
Eric Weisstein's World of Mathematics, Deficient Number.
FORMULA
A080224(n) + A080225(n) + a(n) = A000005(n).
a(n) = Sum_{d|n} A294934(d) = A294926(n) + A294934(n). - Antti Karttunen, Nov 14 2017
EXAMPLE
All 4 divisors of n=21 are deficient: 1=A005100(1), 3=A005100(3), 7=A005100(6) and 21=A005100(17), therefore a(21)=4.
MATHEMATICA
a[n_] := Sum[If[DivisorSigma[1, d] < 2d, 1, 0], {d, Divisors[n]}];
Array[a, 105] (* Jean-François Alcover, Dec 02 2021 *)
PROG
(PARI) A080226(n) = sumdiv(n, d, (sigma(d)<(2*d))); \\ Antti Karttunen, Nov 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 07 2003
STATUS
approved