login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A337345(A091191(n)), where A337345 is the number of divisors d of n for which A003961(d) > 2*d, and A091191 lists the primitive abundant numbers.
3

%I #26 Dec 12 2024 15:13:22

%S 3,3,3,4,4,5,2,4,3,4,2,4,3,3,2,2,6,2,2,2,6,2,6,6,2,2,7,2,6,2,2,2,6,2,

%T 6,2,6,2,5,5,2,2,2,2,6,5,2,2,4,2,2,6,2,2,5,6,2,2,2,12,2,8,2,6,2,2,2,2,

%U 6,2,2,8,2,6,2,8,6,2,2,2,8,2,6,2,2,6,8,2,2,13,2,2,2,6,2,2,8,2,6,2,2,2,4,6

%N a(n) = A337345(A091191(n)), where A337345 is the number of divisors d of n for which A003961(d) > 2*d, and A091191 lists the primitive abundant numbers.

%C For all n, a(n) > 1. This follows from a proof given in A337372. See also A378662.

%C Among the initial 10 million terms, there are 7835064 2's.

%H Antti Karttunen, <a href="/A378658/b378658.txt">Table of n, a(n) for n = 1..100000</a>

%F {A337345(k) for k such that A080224(k) = 1}.

%F a(n) = 1+A378662(A091191(n)).

%t s = Select[Range[2^11], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &];

%t Map[Length@ Select[Divisors[#], 2 # < (Times @@ Map[Power @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi[p] + 1], e}] - Boole[# == 1]) &] &, s] (* _Michael De Vlieger_, Dec 06 2024 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A337345(n) = sumdiv(n,d,A003961(d)>(2*d));

%o is_A091191(n) = if(sigma(n)<=2*n, 0, fordiv(n,d,if(d<n && sigma(d)>2*d, return(0))); (1));

%o k=0; n=0; while(k<100000, n++; if(is_A091191(n), k++; print1(A337345(n), ", "); write("b378658.txt", k, " ", A337345(n))));

%Y Cf. A000203, A003961, A080224, A091191, A337345, A337372, A378662.

%K nonn,look,new

%O 1,1

%A _Antti Karttunen_, Dec 05 2024