login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that C(4n,n)/(3n+1) (A002293) is not divisible by 4.
25

%I #27 Sep 08 2022 08:45:08

%S 0,1,3,5,11,13,21,43,45,53,85,171,173,181,213,341,683,685,693,725,853,

%T 1365,2731,2733,2741,2773,2901,3413,5461,10923,10925,10933,10965,

%U 11093,11605,13653,21845,43691,43693,43701,43733,43861,44373,46421,54613

%N Numbers n such that C(4n,n)/(3n+1) (A002293) is not divisible by 4.

%C Stanica observes that the sequence in binary forms a pattern where 1 bits are inserted into the word 1010101...:

%C 1 11

%C 101 1011 1101

%C 10101 101011 101101 110101

%C 1010101 10101011 10101101 10110101 11010101...

%H Chai Wah Wu, <a href="/A078971/b078971.txt">Table of n, a(n) for n = 1..5050</a>

%H P. Stanica, <a href="http://arXiv.org/abs/math.NT/0010148">p^q Catalan numbers and squarefree binomial coefficients</a>, arXiv:math/0010148 [math.NT], 2000.

%t Select[ Range[0, 65000], Mod[ Binomial[4#, # ]/(3# + 1), 4] != 0 &] (* _Robert G. Wilson v_, Oct 12 2005 *)

%o (PARI) isok(n) = binomial(4*n,n)/(3*n+1) % 4; \\ _Michel Marcus_, Apr 16 2015

%o (Magma) [n: n in [0..2*10^4] | not IsZero(Binomial(4*n,n) div (3*n+1) mod 4)]; // _Vincenzo Librandi_, Apr 16 2015

%o (Python)

%o from __future__ import division

%o A078971_list = []

%o for t in range(100):

%o A078971_list.append((2**(2*t)-1)//3)

%o for j in range(t):

%o A078971_list.append((2**(2*t+1)+2**(2*j+1)-1)//3) # _Chai Wah Wu_, Mar 06 2016

%Y Cf. A000225 (C(2n, n)/(n+1) is not divisible by 2), A003462 (C(3n, n)/(2n+1) is not divisible by 3), A003463 (C(5n, n)/(4n+1) is not divisible by 5).

%K nonn

%O 1,3

%A _Benoit Cloitre_, Jan 14 2003

%E Comments and more terms from _Ralf Stephan_, Oct 30 2003

%E a(28)-a(44) from _Robert G. Wilson v_, Oct 12 2005