login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362995
Triangle read by rows. T(n, k) = [x^k] lcm({i + 1 : 0 <= i <= n}) * (Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1)).
5
1, 3, 2, 11, 28, 18, 25, 184, 351, 192, 137, 2608, 11097, 16128, 7500, 147, 6816, 57591, 166912, 193750, 77760, 1089, 118464, 1865511, 9588736, 20843750, 20062080, 7058940, 2283, 567936, 16015401, 136921088, 495546875, 858003840, 704129265, 220200960
OFFSET
0,2
FORMULA
T(n, k) = lcm(1,2, ..., n+1) * A362996(n, k) / A362997(n, k).
Sum_{k=0..n} (-1)^k * T(n, k) = lcm(1,2, ..., n+1) * Bernoulli(n, 1) = A362994(n).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 3, 2;
[2] 11, 28, 18;
[3] 25, 184, 351, 192;
[4] 137, 2608, 11097, 16128, 7500;
[5] 147, 6816, 57591, 166912, 193750, 77760;
[6] 1089, 118464, 1865511, 9588736, 20843750, 20062080, 7058940;
[7] 2283, 567936, 16015401, 136921088, 495546875, 858003840, 704129265, 220200960;
MAPLE
R := (n, x) -> add(add(x^j*binomial(u, j)*(j + 1)^n, j = 0..u)/(u + 1), u=0..n):
CoeffList := p -> PolynomialTools:-CoefficientList(p, x):
poly := (n, x) -> ilcm(seq(i, i = 1..n+1)) * R(n, x):
seq(print(CoeffList(poly(n, x))), n = 0..7);
PROG
(SageMath)
def A362995row(n: int) -> list[int]:
s = add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
for j in (0..u)) for u in (0..n))
l = lcm(i + 1 for i in (0..n))
return (s * l).list()
for n in (0..7): print(A362995row(n))
CROSSREFS
Cf. A362993 (row sums), A362994 (alternating row sums), A001008 (column 0), A362996/A362997.
Cf. A363000.
Sequence in context: A358589 A087629 A254214 * A178384 A372803 A078563
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 14 2023
STATUS
approved