login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363000
a(n) = numerator(R(n, n, 1)), where R are the rational poynomials R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
5
1, 5, 19, 188, 1249, 125744, 283517, 303923456, 138604561, 599865008128, 118159023973, 7078040993755136, 155792758736921, 146303841678548271104, 294014633772018349, 64670474732430319157248, 752324747622089633569, 3224753626003393505960919040, 2507759850059601711479669
OFFSET
0,2
COMMENTS
R(n, n, 0) are the (0-based) harmonic numbers, R(n, n, -1) are the Bernoulli numbers, and R(n, n, 1) is this sequence in its rational form.
FORMULA
Sum_{k=0..n} R(n, k, 0) = Sum_{j=0..n} (n-j+1)/(j+1) = (n+2)*Harmonic(n+1)-n-1.
Sum_{k=0..n} R(n, k,-1) = (n + 2 - 0^n) * Bernoulli(n, 1).
Sum_{k=0..2*n} R(2*n, k, 1) = A362998(n).
2*R(n, 1, 1) = A062709(n).
EXAMPLE
a(n) are the numerators of the terms on the main diagonal of the triangle:
[0] 1;
[1] 1, 5/2;
[2] 1, 7/2, 19/2;
[3] 1, 11/2, 121/6, 188/3;
[4] 1, 19/2, 95/2, 369/2, 1249/2;
[5] 1, 35/2, 721/6, 1748/3, 35164/15, 125744/15;
[6] 1, 67/2, 639/2, 3877/2, 18533/2, 76317/2, 283517/2;
MAPLE
# For better context we put A362998, A362999, A363000, and A363001 together here.
R := (n, k, x) -> add(add(x^j*binomial(u, j)*(j+1)^n, j=0..u)/(u + 1), u=0..k):
### x = 1 -> this sequence
for n from 0 to 7 do [n], seq(R(n, k, 1), k = 0..n) od;
seq(R(n, n, 1), n = 0..9);
A363000 := n -> numer(R(n, n, 1)): seq(A363000(n), n = 0..10);
A363001 := n -> denom(R(n, n, 1)): seq(A363001(n), n = 0..20);
A362999 := n -> denom(R(2*n+1, 2*n+1, 1)): seq(A362999(n), n = 0..11);
A362998 := n -> add(R(2*n, k, 1), k = 0..2*n): seq(A362998(n), n = 0..9);
### x = -1 -> Bernoulli(n, 1)
# for n from 0 to 9 do [n], seq(R(n, k, -1), k = 0..n) od;
# seq(R(n, n, -1), n = 0..12); seq(bernoulli(n, 1), n = 0..12);
### x = 0 -> Harmonic numbers
# for n from 0 to 9 do [n], seq(R(n, k, 0), k = 0..n) od;
# seq(R(n, n, 0), n = 0..9); seq(harmonic(n+1), n = 0..9);
CROSSREFS
Cf. A363001 (denominators), A362999 (odd-indexed denominators), A362998.
Sequence in context: A082790 A145935 A024529 * A106991 A377556 A102262
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, May 12 2023
STATUS
approved