Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 20 2023 08:22:24
%S 1,3,1,11,14,3,25,46,117,16,137,652,3699,1344,125,49,568,19197,41728,
%T 19375,1296,363,9872,621837,2397184,2084375,334368,16807,761,23664,
%U 5338467,17115136,99109375,7150032,6705993,262144
%N Triangle read by rows. T(n, k) = numerator([x^k] R(n, n, x)), where R(n, k, x) = Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1).
%F T(n, k) = A362995(n, k) * A362997(n, k) / lcm(1, 2, ..., n+1).
%e The triangle T(n, k) begins:
%e [0] 1;
%e [1] 3, 1;
%e [2] 11, 14, 3;
%e [3] 25, 46, 117, 16;
%e [4] 137, 652, 3699, 1344, 125;
%e [5] 49, 568, 19197, 41728, 19375, 1296;
%e [6] 363, 9872, 621837, 2397184, 2084375, 334368, 16807;
%e [7] 761, 23664, 5338467, 17115136, 99109375, 7150032, 6705993, 262144;
%e .
%e The first few polynomials are:
%e [0] 1
%e [1] x + 3/2
%e [2] 3*x^2 + (14/3)*x + 11/6
%e [3] 16*x^3 + (117/4)*x^2 + (46/3)*x + 25/12
%e [4] 125*x^4 + (1344/5)*x^3 + (3699/20)*x^2 + (652/15)*x + 137/60
%e [5] 1296*x^5 + (19375/6)*x^4 + (41728/15)*x^3 + (19197/20)*x^2 + (568/5)*x + 49/20
%o (SageMath)
%o def R(n, k, x):
%o return add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n
%o for j in (0..u)) for u in (0..k))
%o def A362996row(n: int) -> list[int]:
%o return [r.numerator() for r in R(n, n, x).list()]
%o for n in (0..7): print(A362996row(n))
%Y Cf. A362997 (denominator), A001008 (column 0), A000272 (main diagonal), A362995.
%K nonn,tabl,frac
%O 0,2
%A _Peter Luschny_, May 13 2023