login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343989
Numbers that are the sum of five positive cubes in five or more ways.
8
1765, 1980, 2043, 2104, 2195, 2250, 2430, 2449, 2486, 2491, 2493, 2547, 2584, 2592, 2738, 2745, 2764, 2817, 2888, 2915, 2953, 2969, 2979, 3095, 3096, 3133, 3142, 3186, 3188, 3214, 3240, 3249, 3275, 3277, 3310, 3312, 3366, 3403, 3422, 3459, 3464, 3466, 3483, 3492, 3520, 3529, 3583, 3608, 3627, 3653, 3664, 3671
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
2043 = 1^3 + 4^3 + 5^3 + 5^3 + 12^3
= 2^3 + 2^3 + 3^3 + 10^3 + 10^3
= 2^3 + 3^3 + 4^3 + 6^3 + 12^3
= 4^3 + 5^3 + 5^3 + 9^3 + 10^3
= 4^3 + 6^3 + 6^3 + 6^3 + 11^3
so 2043 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 50)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved