login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181078 Expansion of g.f.: exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^(n+k-1) *x^k ] *x^n/n ). 4
1, 1, 2, 5, 29, 657, 61207, 22168009, 29875987984, 155804714312491, 3016989471632014921, 229552430038667549657248, 64995077386747098368845127628, 73163996832774559516266954450479682 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Conjecture: this sequence consists entirely of integers.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 29*x^4 + 657*x^5 + 61207*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 95*x^4/4 + 3126*x^5/5 + 363132*x^6/6 + ... + A181079(n)*x^n/n + ...
which equals the series:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...)*x
+ (1 + 2^2*x + 3^3*x^2 + 4^4*x^3 + 5^5*x^4 + 6^6*x^5 + ...)*x^2/2
+ (1 + 3^3*x + 6^4*x^2 + 10^5*x^3 + 15^6*x^4 + 21^7*x^5 + ...)*x^3/3
+ (1 + 4^4*x + 10^5*x^2 + 20^6*x^3 + 35^7*x^4 + 56^8*x^5 + ...)*x^4/4
+ (1 + 5^5*x + 15^6*x^2 + 35^7*x^3 + 70^8*x^4 + 126^9*x^5 + ...)*x^5/5
+ (1 + 6^6*x + 21^7*x^2 + 56^8*x^3 + 126^9*x^4 + 252^10*x^5 + ...)*x^6/6
+ (1 + 7^7*x + 28^8*x^2 + 84^9*x^3 + 210^10*x^4 + 462^11*x^5 + ...)*x^7/7 + ...
MATHEMATICA
With[{m=20}, CoefficientList[Series[Exp[Sum[Sum[Binomial[n+k-1, k]^(n+k-1)*x^(n+k)/n, {k, 0, m+2}], {n, m+1}]], {x, 0, m}], x]] (* G. C. Greubel, Apr 05 2021 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^(m+k-1)*x^k)*x^m/m)+x*O(x^n)), n)}
(Magma)
m:=30;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( Exp( (&+[ (&+[ Binomial(n+k-1, k)^(n+k-1)*x^(n+k)/n : k in [0..m+2]]): n in [1..m+1]]) ) )); // G. C. Greubel, Apr 05 2021
(Sage)
m=30;
def A181078_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( exp( sum( sum( binomial(n+k-1, k)^(n+k-1)*x^(n+k)/n for k in (0..m+2) ) for n in (1..m+1)) ) ).list()
A181078_list(m) # G. C. Greubel, Apr 05 2021
CROSSREFS
Cf. A181079 (log), variants: A181070, A181074, A181076.
Sequence in context: A098026 A179823 A064098 * A265773 A098717 A059784
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 21:46 EDT 2024. Contains 374575 sequences. (Running on oeis4.)