login
A098026
Smallest prime p such that p+1 is the product of exactly n distinct prime numbers.
5
2, 5, 29, 389, 2309, 30029, 570569, 11741729, 300690389, 10407767369, 239378649509, 9426343036109, 304250263527209, 18740171637257069, 693386350578511589, 37508276737897976009, 2925030695773453637369, 141143645364710083725629, 8327475076517894939812169
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 389 because 389+1 = 2*3*5*13.
MATHEMATICA
Generate[pIndex_, i_] := Module[{p2, t}, p2=pIndex; While[p2[[i]]++; Do[p2[[j]]=p2[[i]]+j-i, {j, i+1, Length[p2]}]; t=Times@@Prime[p2]; t<fact*base, AppendTo[s, t]; If[i<Length[p2], Generate[p2, i+1]]]]; fact=2; Table[pin=Range[n]; base=Times@@Prime[pin]; s={base}; Do[Generate[pin, j], {j, n}]; s=Sort[s]; noPrime=True; i=0; While[noPrime&&i<Length[s], i++; noPrime=!PrimeQ[ -1+s[[i]]]]; If[noPrime, -1, -1+s[[i]]], {n, 20}] (* T. D. Noe, Dec 13 2004 *)
CROSSREFS
Cf. A073918 (least prime p such that p-1 has exactly n distinct prime factors).
Sequence in context: A191621 A103592 A209428 * A179823 A064098 A181078
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 10 2004
EXTENSIONS
Corrected and extended by Ray Chandler, Sep 18 2004
Further corrected and extended by T. D. Noe, Dec 13 2004
a(14) corrected and terms a(18) onward added by Max Alekseyev, Mar 16 2023
STATUS
approved