login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098023
M={{0, 1, -1, 1}, {-1, 0, 1, -1}, {1, -1, 0, 1}, {-1, 1, -1, 0}}; a[n_]:=M.a[n-1]-Sum [a[n-1][[i, i]], {i, 1, 4}]*M/n; a[0]:={{0, 1, 1, 2}, {1, 1, 2, 3}, {1, 2, 3, 5}, {2, 3, 5, 8}};
1
34, 31, 9, 8, 25, 39, 22, 5, 3, 22, 41, 17, 20, 7, 35, 18, 8, 54, 98, 40, 51, 16, 85, 43, 79, 77, 22, 21, 62, 92, 54, 14, 60, 97, 53, 38, 61, 91, 42, 33, 19, 42, 105, 9, 34, 39, 117, 28, 46, 94, 264, 14, 75, 94, 275, 57, 155, 227, 128, 99, 140, 230, 94, 80, 233, 459, 309, 327
OFFSET
1,1
COMMENTS
These types of matrices are used in Kernel inversion functions in scattering theory.
REFERENCES
Roger G. Newton, Scattering Theory of Waves and Particles, McGraw Hill, 1966; p. 254.
MATHEMATICA
(* SO(4) Determinant one 4 X 4 Markov Fredholm-like sequence *) (* page 254 Scattering Theory of Waves and Particles by Roger G. Newton 1966 McGraw Hill*) (* by Roger L. Bagula, Sep 09 2004 *) Clear[M, A, x] digits=8; M={{0, 1, -1, 1}, {-1, 0, 1, -1}, {1, -1, 0, 1}, {-1, 1, -1, 0}}; Det[M] A[n_]:=M.A[n-1]-Sum[A[n-1][[i, i]], {i, 1, 4}]*M/n; A[0]:={{0, 1, 1, 2}, {1, 1, 2, 3}, {1, 2, 3, 5}, {2, 3, 5, 8}}; (* flattened sequence of 4 X 4 matrices made with an SO(4) Determinant one Fredholm-like recurrence*) b=Flatten[Table[M.A[n], {n, 1, digits}]] Floor[Abs[b]] Dimensions[b][[1]] ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A070727 A298894 A204632 * A302209 A022990 A023476
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Sep 09 2004
STATUS
approved