The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098021 Positions of 0's in the zero-one sequence [nr+2r]-[nr]-[2r], where r=sqrt(2) and [ ]=floor; see A187967. 6
 5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109, 116, 121, 128, 133, 138, 145, 150, 157, 162, 169, 174, 179, 186, 191, 198, 203, 208, 215, 220, 227, 232, 237, 244, 249, 256, 261, 268, 273, 278, 285, 290, 297, 302, 307, 314, 319, 326 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Former definition was "Irrational rotation of the square root of 2 as an implicit sequence with an uneven Cantor cartoon." Replaced this with more precise definition from Clark Kimberling. - N. J. A. Sloane, Jan 30 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = 7 * floor(n * (sqrt(2) - 1)) + 5 * floor(n * (2 - sqrt(2))) + 5. - Miko Labalan, Dec 14 2015 a(n) = 3*n + 2*floor(n*sqrt(2)). - G. C. Greubel, Mar 27 2018 MATHEMATICA Table[7 Floor[n (Sqrt[2] - 1)] + 5 Floor[n (2 - Sqrt[2])] + 5, {n, 1000}] (* Miko Labalan, Dec 14 2015 *) Table[3*n + 2*Floor[n*Sqrt[2]], {n, 1, 100}] (* G. C. Greubel, Mar 27 2018 *) PROG (Magma) [3*n+2*Floor(n*Sqrt(2)): n in [1..60]]; // Vincenzo Librandi, Dec 17 2015 (PARI) for(n=1, 100, print1(3*n + 2*floor(n*sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018 CROSSREFS Cf. A187967. Sequence in context: A313980 A313981 A313982 * A356182 A098022 A190550 Adjacent sequences: A098018 A098019 A098020 * A098022 A098023 A098024 KEYWORD nonn AUTHOR Roger L. Bagula, Sep 09 2004 EXTENSIONS Edited and extended by Robert G. Wilson v, Sep 25 2004 Entry revised by N. J. A. Sloane, Jan 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 9 10:46 EDT 2024. Contains 375764 sequences. (Running on oeis4.)