login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098021
Positions of 0's in the zero-one sequence [nr+2r]-[nr]-[2r], where r=sqrt(2) and [ ]=floor; see A187967.
6
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109, 116, 121, 128, 133, 138, 145, 150, 157, 162, 169, 174, 179, 186, 191, 198, 203, 208, 215, 220, 227, 232, 237, 244, 249, 256, 261, 268, 273, 278, 285, 290, 297, 302, 307, 314, 319, 326
OFFSET
1,1
COMMENTS
Former definition was "Irrational rotation of the square root of 2 as an implicit sequence with an uneven Cantor cartoon." Replaced this with more precise definition from Clark Kimberling. - N. J. A. Sloane, Jan 30 2016
LINKS
FORMULA
a(n) = 7 * floor(n * (sqrt(2) - 1)) + 5 * floor(n * (2 - sqrt(2))) + 5. - Miko Labalan, Dec 14 2015
a(n) = 3*n + 2*floor(n*sqrt(2)). - G. C. Greubel, Mar 27 2018
MATHEMATICA
Table[7 Floor[n (Sqrt[2] - 1)] + 5 Floor[n (2 - Sqrt[2])] + 5, {n, 1000}] (* Miko Labalan, Dec 14 2015 *)
Table[3*n + 2*Floor[n*Sqrt[2]], {n, 1, 100}] (* G. C. Greubel, Mar 27 2018 *)
PROG
(Magma) [3*n+2*Floor(n*Sqrt(2)): n in [1..60]]; // Vincenzo Librandi, Dec 17 2015
(PARI) for(n=1, 100, print1(3*n + 2*floor(n*sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018
CROSSREFS
Cf. A187967.
Sequence in context: A313980 A313981 A313982 * A356182 A098022 A190550
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 09 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Sep 25 2004
Entry revised by N. J. A. Sloane, Jan 30 2016
STATUS
approved