login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098021 Positions of 0's in the zero-one sequence [nr+2r]-[nr]-[2r], where r=sqrt(2) and [ ]=floor; see A187967. 5
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109, 116, 121, 128, 133, 138, 145, 150, 157, 162, 169, 174, 179, 186, 191, 198, 203, 208, 215, 220, 227, 232, 237, 244, 249, 256, 261, 268, 273, 278, 285, 290, 297, 302, 307, 314, 319, 326 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Former definition was "Irrational rotation of the square root of 2 as an implicit sequence with an uneven Cantor cartoon." Replaced this with more precise definition from Clark Kimberling. - N. J. A. Sloane, Jan 30 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = 7 * floor(n * (sqrt(2) - 1)) + 5 * floor(n * (2 - sqrt(2))) + 5. - Miko Labalan, Dec 14 2015

a(n) = 3*n + 2*floor(n*sqrt(2)). - G. C. Greubel, Mar 27 2018

MATHEMATICA

Table[7 Floor[n (Sqrt[2] - 1)] + 5 Floor[n (2 - Sqrt[2])] + 5, {n, 1000}] (* Miko Labalan, Dec 14 2015 *)

Table[3*n + 2*Floor[n*Sqrt[2]], {n, 1, 100}] (* G. C. Greubel, Mar 27 2018 *)

PROG

(MAGMA) [3*n+2*Floor(n*Sqrt(2)): n in [1..60]]; // Vincenzo Librandi, Dec 17 2015

(PARI) for(n=1, 100, print1(3*n + 2*floor(n*sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018

CROSSREFS

Cf. A187967.

Sequence in context: A313980 A313981 A313982 * A098022 A190550 A342579

Adjacent sequences:  A098018 A098019 A098020 * A098022 A098023 A098024

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Sep 09 2004

EXTENSIONS

Edited and extended by Robert G. Wilson v, Sep 25 2004

Entry revised by N. J. A. Sloane, Jan 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 14:10 EDT 2022. Contains 355110 sequences. (Running on oeis4.)