|
|
A098021
|
|
Positions of 0's in the zero-one sequence [nr+2r]-[nr]-[2r], where r=sqrt(2) and [ ]=floor; see A187967.
|
|
6
|
|
|
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109, 116, 121, 128, 133, 138, 145, 150, 157, 162, 169, 174, 179, 186, 191, 198, 203, 208, 215, 220, 227, 232, 237, 244, 249, 256, 261, 268, 273, 278, 285, 290, 297, 302, 307, 314, 319, 326
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Former definition was "Irrational rotation of the square root of 2 as an implicit sequence with an uneven Cantor cartoon." Replaced this with more precise definition from Clark Kimberling. - N. J. A. Sloane, Jan 30 2016
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 7 * floor(n * (sqrt(2) - 1)) + 5 * floor(n * (2 - sqrt(2))) + 5. - Miko Labalan, Dec 14 2015
|
|
MATHEMATICA
|
Table[7 Floor[n (Sqrt[2] - 1)] + 5 Floor[n (2 - Sqrt[2])] + 5, {n, 1000}] (* Miko Labalan, Dec 14 2015 *)
Table[3*n + 2*Floor[n*Sqrt[2]], {n, 1, 100}] (* G. C. Greubel, Mar 27 2018 *)
|
|
PROG
|
(PARI) for(n=1, 100, print1(3*n + 2*floor(n*sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|