

A098020


Let f[n] = fractional part of n*Pi and let g[x] = 1 for the range 0<=x<=1/3, g[x] = 0 for the range 1/3<x<=2/3, g[x] = 11 for range 2/3<x<1. Sequence gives all positive integers n such that f[n+2]2*f[n+1]+f[n]g[f[n+1]] = 0.


0



2, 3, 9, 10, 16, 17, 23, 24, 30, 31, 37, 38, 39, 44, 45, 46, 51, 52, 53, 58, 59, 60, 65, 66, 67, 72, 73, 74, 80, 81, 87, 88, 94, 95, 101, 102, 108, 109, 115, 116, 122, 123, 129, 130, 136, 137, 143, 144, 150, 151, 152, 157, 158, 159, 164, 165, 166, 171, 172, 173, 178
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Irrational rotation of Pi as an implicit sequence with an uneven Cantor cartoon.


LINKS



MATHEMATICA

f[n_]=Mod[Pi*n, 1]; digits=200; (* uneven Cantor type function*); g[x_]:=1/ ; 0<=x<=1/3; g[x_]:=0/; 1/3<x<=2/3; g[x_]:=11/; 1/3<x<=1; a=Delete[Union[Table[If [N[f[n+2]2*f[n+1]+f[n]]g[f[n+1]]==0, n, 0], {n, 1, digits}]], 1]


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



