login
A098018
a(n) = Sum_{k|n, k>=2} mu(k-1), where mu() is the Moebius function.
6
0, 1, -1, 0, 0, -1, 1, -1, -1, 1, 1, -3, 0, 1, 0, 0, 0, -2, 0, -1, 0, 3, 1, -5, 0, 1, 0, 0, 0, -1, -1, -1, 0, 2, 2, -3, 0, 0, 0, -1, 0, -2, -1, 1, 0, 2, 1, -5, 1, 1, -1, 1, 0, -2, 1, 0, -1, 2, 1, -5, 0, -1, 1, -1, 0, 2, -1, 0, 0, 3, -1, -6, 0, 0, 1, -1, 2, 1, -1, -1, 0, 1, 1, -5, 0, 1, 0, 1, 0, -3, 1, 2, -2, 3, 1, -5, 0, 0, 0, -1, 0, -1, -1, -1, 2
OFFSET
1,12
LINKS
EXAMPLE
12's divisors >=2 are 2, 3, 4, 6 and 12. So a(12) = mu(1) + mu(2) + mu(3) + mu(5) + mu(11) = 1 - 1 - 1 - 1 - 1 = -3.
MATHEMATICA
f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Nov 01 2004 *)
Table[DivisorSum[n, MoebiusMu[# - 1] &, # > 1 &], {n, 105}] (* Michael De Vlieger, Sep 04 2017 *)
PROG
(PARI) a(n)=sumdiv(n, k, if(k>1, moebius(k-1))) \\ Charles R Greathouse IV, Feb 07 2013
CROSSREFS
Sequence in context: A111025 A271620 A374214 * A260073 A196306 A107093
KEYWORD
sign
AUTHOR
Leroy Quet, Oct 24 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 01 2004
STATUS
approved