login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098025
p and 2p-1 are both Pythagorean primes, i.e., congruent to 1 (mod 4).
2
37, 97, 157, 229, 337, 577, 601, 661, 829, 877, 937, 997, 1009, 1069, 1237, 1297, 1429, 1609, 1657, 2029, 2089, 2137, 2221, 2281, 2557, 2617, 3037, 3061, 3109, 3169, 3181, 3529, 3697, 3709, 3769, 3877, 4177, 4261, 4357, 4621, 4801, 4861, 4909, 5557, 5581
OFFSET
1,1
COMMENTS
The product p*(2p-1) generates a family of base-2 pseudoprimes (i.e., a subsequence of A001567).
REFERENCES
J.-M. De Koninck and A.Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 878 pp. 108; 353, Ellipses Paris 2004.
LINKS
MATHEMATICA
Select[ Prime[ Range[1000]], Mod[#, 4] == 1 && PrimeQ[2 #-1] && Mod[2 #-1, 4] == 1 & ] (* Jean-François Alcover, Sep 14 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 10 2004
EXTENSIONS
More terms from Ray Chandler, Sep 16 2004
STATUS
approved