login
A098025
p and 2p-1 are both Pythagorean primes, i.e., congruent to 1 (mod 4).
2
37, 97, 157, 229, 337, 577, 601, 661, 829, 877, 937, 997, 1009, 1069, 1237, 1297, 1429, 1609, 1657, 2029, 2089, 2137, 2221, 2281, 2557, 2617, 3037, 3061, 3109, 3169, 3181, 3529, 3697, 3709, 3769, 3877, 4177, 4261, 4357, 4621, 4801, 4861, 4909, 5557, 5581
OFFSET
1,1
COMMENTS
The product p*(2p-1) generates a family of base-2 pseudoprimes (i.e., a subsequence of A001567).
REFERENCES
J.-M. De Koninck and A.Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 878 pp. 108; 353, Ellipses Paris 2004.
LINKS
MATHEMATICA
Select[ Prime[ Range[1000]], Mod[#, 4] == 1 && PrimeQ[2 #-1] && Mod[2 #-1, 4] == 1 & ] (* Jean-François Alcover, Sep 14 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 10 2004
EXTENSIONS
More terms from Ray Chandler, Sep 16 2004
STATUS
approved