login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A145480
Primes p such that (p+37)/2 is prime.
12
37, 97, 109, 157, 181, 241, 277, 349, 409, 421, 577, 661, 709, 757, 829, 877, 937, 1009, 1117, 1201, 1249, 1381, 1429, 1609, 1621, 1669, 1777, 1801, 2029, 2089, 2137, 2221, 2269, 2389, 2437, 2521, 2557, 2617, 2857, 3049, 3061, 3121, 3181, 3217, 3301, 3361
OFFSET
1,1
COMMENTS
All these primes are congruent to 1 mod 12
LINKS
FORMULA
a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 23 2017
MATHEMATICA
aa = {}; k = 37; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}]; aa
Select[Prime[Range[500]], PrimeQ[(37+#)/2]&] (* Harvey P. Dale, Jun 23 2016 *)
PROG
(PARI) list(n)=my(t=1, p, i=1); while(i<n, p=prime(i); i=i+1; if(p>2&&isprime((37+p)/2), print(p, ", "))) \\Anders Hellström, Jan 23 2017
(PARI) list(lim)=my(v=List()); forprime(p=3, lim, if(isprime((p+37)/2), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 11 2008
STATUS
approved