%I #29 Jan 15 2019 19:21:01
%S 1,1,1,1,1,4,1,1,9,20,11,1,1,16,87,196,176,46,2,1,25,244,1195,3145,
%T 4431,3161,1007,111,2,1,36,545,4544,22969,73098,147502,185744,140288,
%U 59140,12313,1046,26,1,49,1056,13215,106819,587149,2251309,6082000,11562155
%N Number T(n,k) of ways k L-tiles can be placed on an n X n square; triangle T(n,k), n>=0, 0<=k<=A229093(n), read by rows.
%C An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.
%H Alois P. Heinz, <a href="/A243608/b243608.txt">Rows n = 0..21, flattened</a>
%e T(3,1) = 4:
%e ._____. ._____. ._____. ._____.
%e | |_|_| |_|_|_| |_| |_| |_|_|_|
%e |___|_| | |_|_| |_|___| |_| |_|
%e |_|_|_| |___|_| |_|_|_| |_|___|
%e T(4,4) = 1:
%e ._______.
%e | |_| |_|
%e |___|___|
%e | |_| |_|
%e |___|___|
%e T(5,6) = 2:
%e ._________. ._________.
%e | |_|_| |_| |_| |_| |_|
%e |___| |___| | |___|___|
%e |_| |___|_| |___|_| |_|
%e | |___| |_| | |_| |___|
%e |___|_|___| |___|___|_| .
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1, 1;
%e 1, 4, 1;
%e 1, 9, 20, 11, 1;
%e 1, 16, 87, 196, 176, 46, 2;
%e 1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
%p b:= proc(n, l) option remember; local k;
%p if n<2 then 1
%p elif min(l[])>0 then b(n-1, map(h->h-1, l))
%p else for k while l[k]>0 do od; expand(
%p b(n, subsop(k=1, l))+ `if`(n>1 and k<nops(l)
%p and l[k+1]=0, x*b(n, subsop(k=2, k+1=1, l)), 0))
%p fi
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
%p seq(T(n), n=0..10);
%t b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k<Length[l] && l[[k+1]]==0, x*b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]]]];
%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
%t Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 12 2017, translated from Maple *)
%Y Columns k=0-6 give: A000012, A000290(n-1) for n>0, A243645, A243646, A243647, A243648, A243649.
%Y Row sums give main diagonal of A226444 or A066864(n-1) for n>0.
%K nonn,tabf
%O 0,6
%A _Alois P. Heinz_, Jun 07 2014