login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290631
a(n) = (n^2 + 1) * (2*n - 1).
1
2, 15, 50, 119, 234, 407, 650, 975, 1394, 1919, 2562, 3335, 4250, 5319, 6554, 7967, 9570, 11375, 13394, 15639, 18122, 20855, 23850, 27119, 30674, 34527, 38690, 43175, 47994, 53159, 58682, 64575, 70850, 77519, 84594, 92087, 100010, 108375, 117194, 126479, 136242
OFFSET
1,1
COMMENTS
Sums of all integers between successive central polygonal numbers: (1) 2 (3) 4,5,6 (7) 8,9,10,11,12 (13) ..., where the sums are taken over the terms not in brackets.
Also for n >= 1, sum of 2n-1 consecutive integers beginning with A(n)+1, where A(n) = n(n-1) + 1.
FORMULA
From Colin Barker, Aug 09 2017: (Start)
G.f.: x*(2 + 7*x + 2*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)
EXAMPLE
For n=2, A002061(2)=3, and a(2) = 4 + 5 + 6 = 15.
MATHEMATICA
Array[(#^2 + 1) (2 # - 1) &, 41] (* or *)
Rest@ CoefficientList[Series[x (2 + 7 x + 2 x^2 + x^3)/(1 - x)^4, {x, 0, 41}], x] (* or *)
LinearRecurrence[{4, -6, 4, -1}, {2, 15, 50, 119}, 41] (* Michael De Vlieger, Aug 09 2017 *)
PROG
(PARI) Vec(x*(2 + 7*x + 2*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Aug 09 2017
CROSSREFS
Cf. A002061 (central polygonal numbers), A135668 (complement).
Sequence in context: A350383 A025213 A362303 * A116693 A154565 A066562
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Aug 07 2017
STATUS
approved