login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368884
The largest unitary divisor of n that is the square of a squarefree number (A062503).
3
1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 1, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1
OFFSET
1,4
COMMENTS
The number of these divisors is A368885(n).
FORMULA
Multiplicative with a(p^e) = p^2 if e = 2, and 1 otherwise.
a(n) = n / A368886(n).
a(n) >= 1, with equality if and only if n is in A337050.
a(n) <= n, with equality if and only if n is in A062503.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s-2) - 1/p^(2*s) - 1/p^(3*s-2) + 1/p^(3*s)).
From Vaclav Kotesovec, Jan 09 2024: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (p^(2*s) - p^2) * (1 + (p^s - 1) * (p^2 + p^s + p^(2*s))) / p^(5*s).
Sum_{k=1..n} a(k) ~ c * zeta(3/2) * n^(3/2)/3, where c = Product_{p prime} (1 - 1/p^(11/2) + 1/p^(9/2) + 1/p^4 + 1/p^(7/2) - 1/p^3 - 1/p^(5/2) - 1/p^2) = 0.45021226373776124069206513259105992151602618717147857709105849... (End)
MATHEMATICA
f[p_, e_] := If[e == 2, p^2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 2, f[i, 1]^f[i, 2], 1)); }
(Python)
from math import prod
from sympy import factorint
def A368884(n): return prod(p**e for p, e in factorint(n).items() if e==2) # Chai Wah Wu, Jan 09 2024
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 09 2024
STATUS
approved