login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368881
a(n) = binomial(n+3, 4) + binomial(n+1, 3) + 1.
1
1, 2, 7, 20, 46, 91, 162, 267, 415, 616, 881, 1222, 1652, 2185, 2836, 3621, 4557, 5662, 6955, 8456, 10186, 12167, 14422, 16975, 19851, 23076, 26677, 30682, 35120, 40021, 45416, 51337, 57817, 64890, 72591, 80956, 90022, 99827, 110410, 121811, 134071
OFFSET
0,2
COMMENTS
The number of bigrassmannian permutations in the type B hyperoctahedral group of order 2^n*n!, i.e., those with a unique left and right type B descent or the identity. This can be characterized by avoiding 18 signed permutation patterns.
FORMULA
a(n) = (1/24)*(n^4 + 10*n^3 + 11*n^2 + 2*n + 24).
G.f.: (x^4 - 5x^3 + 7x^2 - 3x + 1)/(1-x)^5.
E.g.f.: exp(x)*(24 + 24*x + 48*x^2 + 16*x^3 + x^4)/24. - Stefano Spezia, Jan 09 2024
EXAMPLE
For n=2, all eight 2 X 2 signed permutation matrices are bigrassmannian except the negative of the identity matrix, or equivalently the one with window notation [-1 -2], so a(2) = 7.
MATHEMATICA
Table[Binomial[n + 3, 4] + Binomial[n + 1, 3] + 1, {n, 0, 20}]
PROG
(Python)
def A368881(n): return 1+(n*(n*(n*(n + 10) + 11) + 2))//24 # Chai Wah Wu, Jan 27 2024
CROSSREFS
Cf. A050407.
It appears that this is equal to {A005712}+1, also ({A212039}+2)/3 .
Sequence in context: A259144 A090145 A244307 * A270109 A360421 A123203
KEYWORD
nonn,easy
AUTHOR
Joshua Swanson, Jan 08 2024
STATUS
approved