login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244307
Sum over each antidiagonal of A244306.
6
0, 2, 7, 20, 45, 92, 170, 296, 486, 766, 1161, 1708, 2443, 3416, 4676, 6288, 8316, 10842, 13947, 17732, 22297, 27764, 34254, 41912, 50882, 61334, 73437, 87388, 103383, 121648, 142408, 165920, 192440, 222258, 255663, 292980, 334533, 380684, 431794, 488264
OFFSET
1,2
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
FORMULA
Empirically, a(n) = (6*n^5 + 30*n^4 + 180*n^3 + 240*n^2 - 141*n - 135 + (45*n + 135)*(-1)^n)/1440.
Empirical g.f.: x^2*(x^3-x+2) / ((x-1)^6*(x+1)^2). - Colin Barker, Jun 01 2015
EXAMPLE
a(1..9) are formed as follows:
. Antidiagonals of A244306 n a(n)
. 0 1 0
. 1 1 2 2
. 2 3 2 3 7
. 4 6 6 4 4 20
. 6 10 13 10 6 5 45
. 9 15 22 22 15 9 6 92
. 12 21 34 36 34 21 12 7 170
. 16 28 48 56 56 48 28 16 8 296
. 20 36 65 78 88 78 65 36 20 9 486
MAPLE
b := proc (n::integer, k::integer)::integer;
(4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 -
(2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k -
(-1)^k*(-1)^n)*(1/32);
end proc;
for j to 40 do
a := 0;
for k from j by -1 to 1 do
n := j - k + 1;
a := a + b(n, k);
end do;
printf("%d, ", a);
end do;
CROSSREFS
Cf. A244306.
Sequence in context: A136907 A259144 A090145 * A368881 A270109 A360421
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms corrected and extended by Christopher Hunt Gribble, Mar 31 2015
STATUS
approved