OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,2,-22,-4,14,-1,-1).
FORMULA
G.f.: 2*(x^6-8*x^5+17*x^4+23*x^3+5*x^2-10*x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
EXAMPLE
a(3) is 48 because L(3)^3 - L(3)^2 = 4^3 - 4^2 = 48.
MATHEMATICA
CoefficientList[Series[2 (x^6 - 8 x^5 + 17 x^4 + 23 x^3 + 5 x^2 - 10 x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
Table[LucasL[n]^3 - LucasL[n]^2, {n, 0, 50}] (* G. C. Greubel, Oct 13 2018 *)
PROG
(PARI)
lucas(n) = if(n==0, 2, 2*fibonacci(n-1)+fibonacci(n))
vector(50, n, lucas(n-1)^3-lucas(n-1)^2)
(Magma) [Lucas(n)^3 - Lucas(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 25 2014
STATUS
approved