login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244310
a(n) = L(n)^3 - L(n)^2, where L(n) is the n-th Lucas number (A000032).
2
4, 0, 18, 48, 294, 1210, 5508, 23548, 101614, 433200, 1845738, 7840998, 33282564, 141149320, 598366458, 2535856048, 10745092894, 45524786370, 192866785668, 817050731748, 3461224027254, 14662350247600, 62111682111618, 263111844646798, 1114566304573444
OFFSET
0,1
FORMULA
G.f.: 2*(x^6-8*x^5+17*x^4+23*x^3+5*x^2-10*x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000032(n)). - Michel Marcus, Jun 25 2014
EXAMPLE
a(3) is 48 because L(3)^3 - L(3)^2 = 4^3 - 4^2 = 48.
MATHEMATICA
CoefficientList[Series[2 (x^6 - 8 x^5 + 17 x^4 + 23 x^3 + 5 x^2 - 10 x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
Table[LucasL[n]^3 - LucasL[n]^2, {n, 0, 50}] (* G. C. Greubel, Oct 13 2018 *)
PROG
(PARI)
lucas(n) = if(n==0, 2, 2*fibonacci(n-1)+fibonacci(n))
vector(50, n, lucas(n-1)^3-lucas(n-1)^2)
(Magma) [Lucas(n)^3 - Lucas(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 25 2014
STATUS
approved