login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244309
a(n) = F(n)^3 - F(n)^2, where F(n) is the n-th Fibonacci number (A000045).
2
0, 0, 0, 4, 18, 100, 448, 2028, 8820, 38148, 163350, 697048, 2965248, 12595048, 53440504, 226608900, 960530634, 4070452764, 17246835648, 73069580980, 309555981900, 1311374255620, 5555264316910, 23532984885744, 99688652356608, 422291386890000
OFFSET
0,4
FORMULA
G.f.: 2*x^3*(x^2-x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000045(n)). - Michel Marcus, Jun 25 2014
a(n) = (F(3*n) - 3*(-1)^n*F(n))/5 - (L(2*n) - 2*(-1)^n)/5, where F=A000045 and L=A000032. - Ehren Metcalfe, Mar 26 2016
EXAMPLE
a(4) is 18 because F(4)^3 - F(4)^2 = 3^3 - 3^2 = 18.
MATHEMATICA
CoefficientList[Series[2 x^3 (x^2 - x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
Table[#^3 - #^2 &@ Fibonacci@ n, {n, 0, 25}] (* Michael De Vlieger, Mar 27 2016 *)
LinearRecurrence[{5, 2, -22, -4, 14, -1, -1}, {0, 0, 0, 4, 18, 100, 448}, 30] (* Harvey P. Dale, Aug 22 2020 *)
PROG
(PARI) vector(50, n, fibonacci(n-1)^3-fibonacci(n-1)^2)
(Magma) [Fibonacci(n)^3 - Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 25 2014
STATUS
approved