OFFSET
0,3
FORMULA
G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137957.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(3-4*s) / ((66*s - 48)*Pi)) / (n^(3/2) * r^n), where r = 0.1243879037293364492255197677726812528516871521834... and s = 1.442260525872978775674461288363175530136608288804... are real roots of the system of equations s = 1 + r*(1 + r*s^3)^4, 12 * r^2 * s^2 * (1 + r*s^3)^3 = 1. - Vaclav Kotesovec, Nov 22 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[4*(n-k), k]/(n-k)*Binomial[3*k, n-k-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^3)^4); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(4*(n-k), k)/(n-k)*binomial(3*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved