login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137959
G.f. satisfies A(x) = 1 + x + x^2*A(x)^5.
7
1, 1, 1, 5, 15, 55, 220, 876, 3645, 15485, 66735, 292155, 1293456, 5782320, 26071435, 118402495, 541150155, 2487204315, 11488482130, 53302256250, 248293549685, 1160794446445, 5444674773325, 25614768620105, 120837493137460
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} C(n-k,k)/(n-k) * C(5*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 64*(n-4)*(n-3)*(n-2)*(n-1)*n*(2*n-5)*(2*n-3)*(2*n-1)*(2*n+1)*a(n) = + 5*(n-4)*(n-3)*(n-2)*(2*n-5)*(2*n-3)*(5*n-8)*(5*n-6)*(5*n-4)*(5*n-2)*a(n-2) + 5*(n-4)*(n-3)*(2*n-5)*(5000*n^6 - 45000*n^5 + 157250*n^4 - 267750*n^3 + 227216*n^2 - 87057*n + 11520)*a(n-3) + 15*(n-4)*(5000*n^8 - 80000*n^7 + 532250*n^6 - 1903250*n^5 + 3938648*n^4 - 4710638*n^3 + 3044313*n^2 - 895443*n + 80640)*a(n-4) + 5*(n-2)*(2*n-1)*(5000*n^7 - 95000*n^6 + 734250*n^5 - 2951750*n^4 + 6510194*n^3 - 7505289*n^2 + 3655107*n - 207360)*a(n-5) + 5*(n-3)*(n-2)*n*(2*n-3)*(2*n-1)*(5*n-29)*(5*n-23)*(5*n-17)*(5*n-11)*a(n-6). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ sqrt(s*(1-s)*(5-6*s) / ((40*s - 40)*Pi)) / (n^(3/2) * r^n), where r = 0.1990700277700792324868112833575428736312653553870... and s = 1.498837534712599040608514104196928592039081694233... are real roots of the system of equations s = 1 + r*(1 + r*s^5), 5 * r^2 * s^4 = 1. - Vaclav Kotesovec, Nov 22 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k]/(n-k)*Binomial[5*k, n-k-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^5)); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-k, k)/(n-k)*binomial(5*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved