OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..n-1} C(n-k,k)/(n-k) * C(5*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 64*(n-4)*(n-3)*(n-2)*(n-1)*n*(2*n-5)*(2*n-3)*(2*n-1)*(2*n+1)*a(n) = + 5*(n-4)*(n-3)*(n-2)*(2*n-5)*(2*n-3)*(5*n-8)*(5*n-6)*(5*n-4)*(5*n-2)*a(n-2) + 5*(n-4)*(n-3)*(2*n-5)*(5000*n^6 - 45000*n^5 + 157250*n^4 - 267750*n^3 + 227216*n^2 - 87057*n + 11520)*a(n-3) + 15*(n-4)*(5000*n^8 - 80000*n^7 + 532250*n^6 - 1903250*n^5 + 3938648*n^4 - 4710638*n^3 + 3044313*n^2 - 895443*n + 80640)*a(n-4) + 5*(n-2)*(2*n-1)*(5000*n^7 - 95000*n^6 + 734250*n^5 - 2951750*n^4 + 6510194*n^3 - 7505289*n^2 + 3655107*n - 207360)*a(n-5) + 5*(n-3)*(n-2)*n*(2*n-3)*(2*n-1)*(5*n-29)*(5*n-23)*(5*n-17)*(5*n-11)*a(n-6). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ sqrt(s*(1-s)*(5-6*s) / ((40*s - 40)*Pi)) / (n^(3/2) * r^n), where r = 0.1990700277700792324868112833575428736312653553870... and s = 1.498837534712599040608514104196928592039081694233... are real roots of the system of equations s = 1 + r*(1 + r*s^5), 5 * r^2 * s^4 = 1. - Vaclav Kotesovec, Nov 22 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k]/(n-k)*Binomial[5*k, n-k-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^5)); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-k, k)/(n-k)*binomial(5*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved