OFFSET
0,3
FORMULA
G.f.: A(x) = 1 + x*B(x)^3 where B(x) is the g.f. of A137958.
a(n) = Sum_{k=0..n-1} C(3*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(3*s*(1-s)*(4-5*s) / ((88*s - 72)*Pi)) / (n^(3/2) * r^n), where r = 0.1243879037293364492255197677726812528516871521834... and s = 1.373172215091866448521512759142574301075022413158... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^3, 12 * r^2 * s^3 * (1 + r*s^4)^2 = 1. - Vaclav Kotesovec, Nov 22 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[3*(n-k), k]/(n-k)*Binomial[4*k, n-k-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^4)^3); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(3*(n-k), k)/(n-k)*binomial(4*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved