OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, Recurrence
FORMULA
G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137956.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(2*s*(1-s)*(4-5*s) / ((56*s - 48)*Pi)) / (n^(3/2) * r^n), where r = 0.1569043698639381952962655091205241634381480571697... and s = 1.444765371242615455251538467189577278901629278244... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^2, 8 * r^2 * s^3 * (1 + r*s^4) = 1. - Vaclav Kotesovec, Nov 22 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[2*(n-k), k]/(n-k)*Binomial[4*k, n-k-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^4)^2); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(2*(n-k), k)/(n-k)*binomial(4*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved