login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137971 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4. 6
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..350

FORMULA

G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137972.

a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009

a(n) ~ sqrt(4*s*(1-s)*(6-7*s) / ((276*s - 240)*Pi)) / (n^(3/2) * r^n), where r = 0.0833821738312503523008482260558417829257343369560... and s = 1.229254439060935443156800948762443928645579909446... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^4, 24 * r^2 * s^5 * (1 + r*s^6)^3 = 1. - Vaclav Kotesovec, Nov 22 2017

PROG

(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^6)^4); polcoeff(A, n)}

(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(4*(n-k), k)/(n-k)*binomial(6*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009

CROSSREFS

Cf. A137972, A137970; A137956, A137958, A137964.

Sequence in context: A000313 A082144 A220727 * A346579 A300159 A213102

Adjacent sequences:  A137968 A137969 A137970 * A137972 A137973 A137974

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 26 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 19:13 EST 2021. Contains 349596 sequences. (Running on oeis4.)