login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137971
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.
6
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137972.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(6-7*s) / ((276*s - 240)*Pi)) / (n^(3/2) * r^n), where r = 0.0833821738312503523008482260558417829257343369560... and s = 1.229254439060935443156800948762443928645579909446... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^4, 24 * r^2 * s^5 * (1 + r*s^6)^3 = 1. - Vaclav Kotesovec, Nov 22 2017
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^6)^4); polcoeff(A, n)}
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(4*(n-k), k)/(n-k)*binomial(6*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2008
STATUS
approved