login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244305
Number of standard Young tableaux with 2n cells such that the lengths of the first and the last row differ by n.
2
1, 0, 3, 10, 119, 791, 8823, 87515, 1042823, 12448912, 166443706, 2246438833, 32782857721, 488717384754, 7695520330054, 124248088106249, 2091672883631855, 36107381616662300, 644987804706582806, 11799406380611542654, 222235188242044718908, 4280160250751484220674
OFFSET
0,3
COMMENTS
Also the number of ballot sequences of length 2n such that the multiplicities of the largest and the smallest value differ by n.
LINKS
FORMULA
a(n) = A238707(2n,n).
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0 or i<1 or `if`(l<>[], l[1], i)-1<k, 0,
`if`(l<>[] and l[1]-i=k, `if`(irem(n, i, 'j')=0, h([l[], i$j]),
0), add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i)))
end:
a:= n-> `if`(n=0, 1, g(2*n$2, n, [])):
seq(a(n), n=0..25);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+
Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]];
g[n_, i_, k_, l_] := If[n == 0 || i<1 || If[l != {}, l[[1]], i]-1<k, 0,
If[l != {} && l[[1]] - i == k, j = Quotient[n, i];
If[Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0],
Sum[g[n - i*j, i-1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]]];
a[n_] := If[n == 0, 1, g[2n, 2n, n, {}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 29 2021, after Maple code *)
CROSSREFS
Cf. A238707.
Sequence in context: A132480 A201694 A336210 * A074260 A180978 A241461
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 25 2014
STATUS
approved