Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 30 2016 22:17:30
%S 0,2,7,20,45,92,170,296,486,766,1161,1708,2443,3416,4676,6288,8316,
%T 10842,13947,17732,22297,27764,34254,41912,50882,61334,73437,87388,
%U 103383,121648,142408,165920,192440,222258,255663,292980,334533,380684,431794,488264
%N Sum over each antidiagonal of A244306.
%H Christopher Hunt Gribble, <a href="/A244307/b244307.txt">Table of n, a(n) for n = 1..10000</a>
%F Empirically, a(n) = (6*n^5 + 30*n^4 + 180*n^3 + 240*n^2 - 141*n - 135 + (45*n + 135)*(-1)^n)/1440.
%F Empirical g.f.: x^2*(x^3-x+2) / ((x-1)^6*(x+1)^2). - _Colin Barker_, Jun 01 2015
%e a(1..9) are formed as follows:
%e . Antidiagonals of A244306 n a(n)
%e . 0 1 0
%e . 1 1 2 2
%e . 2 3 2 3 7
%e . 4 6 6 4 4 20
%e . 6 10 13 10 6 5 45
%e . 9 15 22 22 15 9 6 92
%e . 12 21 34 36 34 21 12 7 170
%e . 16 28 48 56 56 48 28 16 8 296
%e . 20 36 65 78 88 78 65 36 20 9 486
%p b := proc (n::integer, k::integer)::integer;
%p (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 -
%p (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k -
%p (-1)^k*(-1)^n)*(1/32);
%p end proc;
%p for j to 40 do
%p a := 0;
%p for k from j by -1 to 1 do
%p n := j - k + 1;
%p a := a + b(n, k);
%p end do;
%p printf("%d, ", a);
%p end do;
%Y Cf. A244306.
%K nonn
%O 1,2
%A _Christopher Hunt Gribble_, Jun 25 2014
%E Terms corrected and extended by _Christopher Hunt Gribble_, Mar 31 2015