The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244307 Sum over each antidiagonal of A244306. 6

%I

%S 0,2,7,20,45,92,170,296,486,766,1161,1708,2443,3416,4676,6288,8316,

%T 10842,13947,17732,22297,27764,34254,41912,50882,61334,73437,87388,

%U 103383,121648,142408,165920,192440,222258,255663,292980,334533,380684,431794,488264

%N Sum over each antidiagonal of A244306.

%H Christopher Hunt Gribble, <a href="/A244307/b244307.txt">Table of n, a(n) for n = 1..10000</a>

%F Empirically, a(n) = (6*n^5 + 30*n^4 + 180*n^3 + 240*n^2 - 141*n - 135 + (45*n + 135)*(-1)^n)/1440.

%F Empirical g.f.: x^2*(x^3-x+2) / ((x-1)^6*(x+1)^2). - _Colin Barker_, Jun 01 2015

%e a(1..9) are formed as follows:

%e . Antidiagonals of A244306 n a(n)

%e . 0 1 0

%e . 1 1 2 2

%e . 2 3 2 3 7

%e . 4 6 6 4 4 20

%e . 6 10 13 10 6 5 45

%e . 9 15 22 22 15 9 6 92

%e . 12 21 34 36 34 21 12 7 170

%e . 16 28 48 56 56 48 28 16 8 296

%e . 20 36 65 78 88 78 65 36 20 9 486

%p b := proc (n::integer, k::integer)::integer;

%p (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 -

%p (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k -

%p (-1)^k*(-1)^n)*(1/32);

%p end proc;

%p for j to 40 do

%p a := 0;

%p for k from j by -1 to 1 do

%p n := j - k + 1;

%p a := a + b(n, k);

%p end do;

%p printf("%d, ", a);

%p end do;

%Y Cf. A244306.

%K nonn

%O 1,2

%A _Christopher Hunt Gribble_, Jun 25 2014

%E Terms corrected and extended by _Christopher Hunt Gribble_, Mar 31 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 02:31 EST 2023. Contains 359981 sequences. (Running on oeis4.)