login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335275
Numbers k such that the largest square dividing k is a unitary divisor of k.
18
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
OFFSET
1,2
COMMENTS
Numbers k such that gcd(A008833(k), k/A008833(k)) = 1.
Numbers whose prime factorization contains exponents that are either 1 or even.
Numbers whose powerful part (A057521) is a square.
First differs from A220218 at n = 227: a(227) = 256 is not a term of A220218.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465).
Complement of A295661. - Vaclav Kotesovec, Jul 07 2020
Differs from A096432 in having or not having 1, 256, 432, 648, 768, 1280, 1728, 1792, 2000, 2160, 2304,... - R. J. Mathar, Jul 22 2020
Equivalently, numbers k whose squarefree part (A007913) is a unitary divisor, or gcd(A007913(k), A008833(k)) = 1. - Amiram Eldar, Oct 09 2022
LINKS
Eckford Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc., Vol. 112, No. 2 (1964), pp. 214-227. See corollary 3.1.2, p. 222.
EXAMPLE
12 is a term since the largest square dividing 12 is 4, and 4 and 12/4 = 3 are coprime.
MATHEMATICA
seqQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 1 || EvenQ[#] &]; Select[Range[100], seqQ]
PROG
(PARI) isok(k) = my(d=k/core(k)); gcd(d, k/d) == 1; \\ Michel Marcus, Jul 07 2020
CROSSREFS
A000290, A138302 and A220218 are subsequences.
Sequence in context: A007412 A270420 A336592 * A337052 A377020 A220218
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 06 2020
STATUS
approved