login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335274
a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4.
1
0, 1, 4, 8, 17, 38, 84, 185, 408, 900, 1985, 4378, 9656, 21297, 46972, 103600, 228497, 503966, 1111532, 2451561, 5407088, 11925708, 26302977, 58013042, 127951792, 282206561, 622426164, 1372804120, 3027814801, 6678055766
OFFSET
0,3
COMMENTS
a(n) is the number of ways to tile a 2 x n strip, with a bent tromino added to the top, with dominos and L-shaped trominos:
._
|_|_
|_|_|_ _ _
|_|_|_|_|_| . . .
|_|_|_|_|_| . . .
FORMULA
a(n) = 2*a(n-1) + a(n-3).
a(n) = 2*A008998(n-1) - A008998(n-4).
a(n) = A008998(n-1) + 2*A008998(n-2).
G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - Colin Barker, Jun 04 2020
EXAMPLE
a(2) = 4 as shown by these four tilings:
._ _ _ _
|X|_ | |_ |X|_ | |_
|X|X| , |_|X| , |X|X| , |_| |
|_ _| |X X| | | | |X|_|
|_ _| |_ _| |_|_| |X X|
PROG
(PARI) concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ Colin Barker, Jun 04 2020
CROSSREFS
Sequence in context: A019479 A084814 A098125 * A296399 A119471 A145779
KEYWORD
nonn,easy
AUTHOR
Michael Tulskikh, May 30 2020
STATUS
approved