

A084814


Least integers that satisfy Sum_{n>=1} 1/a(n)^z = 0, where a(1)=1, a(n+1) > a(n) and z = i*Pi/2.


3



1, 4, 8, 17, 37, 82, 185, 419, 952, 2166, 4932, 11234, 25593
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sequence satisfies Sum_{n>=1} 1/a(n)^z = 0 by requiring that the modulus of the successive partial sums are monotonically decreasing in magnitude for the given z.


LINKS



PROG

(PARI) S=0; w=1; a=0; for(n=1, 100, b=a+1; while(abs(S+exp(z*log(b)))>w, b++); S=S+exp(z*log(b)); w=abs(S); a=b; print1(b, ", "))


CROSSREFS



KEYWORD

nonn,more


AUTHOR



STATUS

approved



