login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A019479
Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(4,8).
1
4, 8, 17, 37, 81, 178, 392, 864, 1905, 4201, 9265, 20434, 45068, 99400, 219233, 483533, 1066465, 2352162, 5187856, 11442176, 25236513, 55660881, 122763937, 270764386, 597189652, 1317143240, 2905050865, 6407291381, 14131726001, 31168502866, 68744297112
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Apparently satisfies a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4).
Empirical G.f.: (4-4*x+x^2-2*x^3)/(1-3*x+2*x^2-x^3+x^4). - Colin Barker, Feb 04 2012
PROG
(PARI) S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a
S(4, 8, 40) \\ Colin Barker, Feb 16 2016
CROSSREFS
Sequence in context: A215108 A307545 A115618 * A084814 A098125 A335274
KEYWORD
nonn
AUTHOR
STATUS
approved