login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019480
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,12) (agrees with A019481 for n <= 19 only).
3
4, 12, 37, 115, 358, 1115, 3473, 10818, 33697, 104963, 326950, 1018419, 3172281, 9881362, 30779529, 95875387, 298642966, 930245227, 2897627873, 9025842914, 28114666162, 87574585658, 272786737320, 849705465331, 2646753962113, 8244393877392, 25680524664755
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993;.
MAPLE
a:= proc(n) option remember;
`if`(n<2, [4, 12][n+1], floor(a(n-1)^2/a(n-2))+1)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 18 2015
MATHEMATICA
S[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = Last@ s + 1; While[k/s[[i - 1]] <= s[[i - 1]]/s[[i - 2]], k++]; AppendTo[s, k], {i, 3, n}]; s]; S[4, 12, 14] (* Michael De Vlieger, Feb 15 2016 *)
PROG
(PARI) S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a
S(4, 12, 40) \\ Colin Barker, Feb 15 2016
CROSSREFS
Sequence in context: A196918 A099098 A019481 * A192907 A047088 A280891
KEYWORD
nonn
AUTHOR
STATUS
approved