|
|
A019478
|
|
a(n) = 5*a(n-1) + a(n-2) - 3*a(n-3).
|
|
2
|
|
|
3, 15, 76, 386, 1961, 9963, 50618, 257170, 1306579, 6638211, 33726124, 171349094, 870556961, 4422955527, 22471287314, 114167721214, 580041026803, 2946958993287, 14972332829596, 76068500060858, 386473956154025, 1963521282342195, 9975874867682426, 50683473752292250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Agrees with A019477 only for n <= 23.
|
|
REFERENCES
|
R. K. Guy, personal communication.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (5,1,-3).
|
|
FORMULA
|
O.g.f.: (3 - 2*x^2)/(1 - 5*x - x^2 + 3*x^3). - R. J. Mathar, May 09 2008
|
|
MATHEMATICA
|
CoefficientList[Series[(3 - 2 x^2)/(1 - 5 x - x^2 + 3 x^3), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jan 21 2017 *)
|
|
PROG
|
(PARI) Vec((3-2*x^2)/(1-5*x-x^2+3*x^3) + O(x^24)); \\ Michel Marcus, Jan 21 2017
(MAGMA) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(3-2*x^2)/(1-5*x-x^2+3*x^3)); // Vincenzo Librandi, Jan 23 2017
|
|
CROSSREFS
|
Cf. A019477.
Sequence in context: A037759 A037647 A019477 * A151327 A125700 A037766
Adjacent sequences: A019475 A019476 A019477 * A019479 A019480 A019481
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Michel Marcus, Jan 21 2017
|
|
STATUS
|
approved
|
|
|
|