The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019482 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,28). 1
 4, 28, 197, 1387, 9766, 68764, 484179, 3409187, 24004668, 169020968, 1190105509, 8379736191, 59003154006, 415451286688, 2925263479867, 20597279875727, 145028966176516, 1021173725712004, 7190258646781909, 50627839422302787, 356479265974341398 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This coincides with the linearly recurrent sequence defined by the expansion of (4-3*x^2)/(1-7*x-x^2+5*x^3) only up to n<=55. - R. J. Mathar, Feb 10 2016 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Index entries for Pisot sequences MAPLE a:= proc(n) option remember; `if`(n<2, [4, 28][n+1], floor(a(n-1)^2/a(n-2))+1) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 10 2016 MATHEMATICA a[n_] := a[n] = Switch[n, 0, 4, 1, 28, _, Floor[a[n - 1]^2/a[n - 2]] + 1]; a /@ Range[0, 30] (* Jean-François Alcover, Feb 06 2020, after Alois P. Heinz *) PROG (PARI) S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a S(4, 28, 40) \\ Colin Barker, Feb 16 2016 CROSSREFS Sequence in context: A208704 A270471 A355354 * A198630 A246021 A090965 Adjacent sequences: A019479 A019480 A019481 * A019483 A019484 A019485 KEYWORD nonn AUTHOR R. K. Guy STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:24 EDT 2024. Contains 374459 sequences. (Running on oeis4.)