login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355354
G.f. A(x) satisfies: 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
9
1, 4, 28, 196, 1416, 10860, 87392, 727188, 6196212, 53783336, 474011756, 4231158016, 38174676188, 347566170384, 3189295781780, 29465038957708, 273851282010308, 2558703740102840, 24019990008557160, 226444571054525156, 2142925363606256584, 20349477565111498148
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} A355350(n,k) * 4^k for n >= 0.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 4*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 28*x^2 + 196*x^3 + 1416*x^4 + 10860*x^5 + 87392*x^6 + 727188*x^7 + 6196212*x^8 + 53783336*x^9 + 474011756*x^10 + ...
where
4*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
4*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1, 4], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2022
STATUS
approved