Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 08 2020 09:02:53
%S 0,1,4,8,17,38,84,185,408,900,1985,4378,9656,21297,46972,103600,
%T 228497,503966,1111532,2451561,5407088,11925708,26302977,58013042,
%U 127951792,282206561,622426164,1372804120,3027814801,6678055766
%N a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4.
%C a(n) is the number of ways to tile a 2 x n strip, with a bent tromino added to the top, with dominos and L-shaped trominos:
%C ._
%C |_|_
%C |_|_|_ _ _
%C |_|_|_|_|_| . . .
%C |_|_|_|_|_| . . .
%H Colin Barker, <a href="/A335274/b335274.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,1).
%F a(n) = 2*a(n-1) + a(n-3).
%F a(n) = 2*A008998(n-1) - A008998(n-4).
%F a(n) = A008998(n-1) + 2*A008998(n-2).
%F G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - _Colin Barker_, Jun 04 2020
%e a(2) = 4 as shown by these four tilings:
%e ._ _ _ _
%e |X|_ | |_ |X|_ | |_
%e |X|X| , |_|X| , |X|X| , |_| |
%e |_ _| |X X| | | | |X|_|
%e |_ _| |_ _| |_|_| |X X|
%o (PARI) concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ _Colin Barker_, Jun 04 2020
%Y Cf. A008998, A335242.
%K nonn,easy
%O 0,3
%A _Michael Tulskikh_, May 30 2020