|
|
A033634
|
|
OddPowerSigma(n) = sum of odd power divisors of n.
|
|
10
|
|
|
1, 3, 4, 3, 6, 12, 8, 11, 4, 18, 12, 12, 14, 24, 24, 11, 18, 12, 20, 18, 32, 36, 24, 44, 6, 42, 31, 24, 30, 72, 32, 43, 48, 54, 48, 12, 38, 60, 56, 66, 42, 96, 44, 36, 24, 72, 48, 44, 8, 18, 72, 42, 54, 93, 72, 88, 80, 90, 60, 72, 62, 96, 32, 43, 84, 144, 68, 54, 96, 144
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Odd power divisors of n are all the terms of A268335 (numbers whose prime power factorization contains only odd exponents) that divide n. - Antti Karttunen, Nov 23 2017
The Mobius transform is 1, 2, 3, 0, 5, 6, 7, 8, 0, 10, 11, 0, 13, 14, 15, 0, 17, 0, 19, 0, 21, 22, 23, 24, 0, 26, ..., where the places of zeros seem to be listed in A072587. - R. J. Mathar, Nov 27 2017
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..16384
Index entries for sequences related to sums of divisors.
|
|
FORMULA
|
Let n = Product p(i)^r(i) then a(n) = Product (1+[p(i)^(s(i)+2)-p(i)]/[p(i)^2-1]), where si=ri when ri is odd, si=ri-1 when ri is even. Special cases:
a(p) = 1+p for primes p, subsequence A008864.
a(p^2) = 1+p for primes p.
a(p^3) = 1+p+p^3 for primes p, subsequence A181150.
a(n) = Sum_{d|n} A295316(d)*d. - Antti Karttunen, Nov 23 2017
a(n) <= A000203(n). - R. J. Mathar, Nov 27 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/(p*(p+1))) = A072691 * A065463 = 0.5793804... . - Amiram Eldar, Oct 27 2022
|
|
EXAMPLE
|
The divisors of 7 are 1^1 and 7^1, which have only odd exponents (=1), so a(8) = 1+7 = 8. The divisors of 8 are 1^1, 2^1, 2^2 and 2^3; 2^2 has an even prime power and does not count, so a(8) = 1+2+8=11. The divisors of 12 are 1^1, 2^1, 3^1, 2^2, 2^1*3^1 and 2^2*3; 2^2 and 2^2*3 don't count because they have prime factors with even powers, so a(12) = 1+2+3+6 = 12.
|
|
MAPLE
|
A033634 := proc(n)
a := 1 ;
for d in ifactors(n)[2] do
if type(op(2, d), 'odd') then
s := op(2, d) ;
else
s := op(2, d)-1 ;
end if;
p := op(1, d) ;
a := a*(1+(p^(s+2)-p)/(p^2-1)) ;
end do:
a;
end proc: # R. J. Mathar, Nov 20 2010
|
|
MATHEMATICA
|
f[e_] := If[OddQ[e], e+2, e+1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
|
|
PROG
|
(PARI)
A295316(n) = factorback(apply(e -> (e%2), factorint(n)[, 2]));
A033634(n) = sumdiv(n, d, A295316(d)*d); \\ Antti Karttunen, Nov 23 2017
|
|
CROSSREFS
|
Cf. A000203, A008864, A072587, A181150, A268335, A295316.
Cf. also A126849.
Cf. A065463, A072691.
Sequence in context: A109506 A000113 A069915 * A349337 A358045 A111970
Adjacent sequences: A033631 A033632 A033633 * A033635 A033636 A033637
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Yasutoshi Kohmoto
|
|
STATUS
|
approved
|
|
|
|