login
A365337
The sum of divisors of the largest exponentially odd number dividing n.
1
1, 3, 4, 3, 6, 12, 8, 15, 4, 18, 12, 12, 14, 24, 24, 15, 18, 12, 20, 18, 32, 36, 24, 60, 6, 42, 40, 24, 30, 72, 32, 63, 48, 54, 48, 12, 38, 60, 56, 90, 42, 96, 44, 36, 24, 72, 48, 60, 8, 18, 72, 42, 54, 120, 72, 120, 80, 90, 60, 72, 62, 96, 32, 63, 84, 144, 68
OFFSET
1,2
COMMENTS
The number of divisors of the largest exponentially odd number dividing n is A286324(n).
LINKS
FORMULA
a(n) = A000203(A350390(n)).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and (p^e-1)/(p-1) if e is even.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911488886... (A065487). - Amiram Eldar, Sep 01 2023
MATHEMATICA
f[p_, e_] := (p^(e + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + f[i, 2]%2) - 1)/(f[i, 1] - 1)); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 01 2023
STATUS
approved