OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + 3*C(n-2, k-1), with T(0, k) = T(1, k) = 1.
G.f.: (1 + 3*x^2*y)/(1 - x*(1+y)). (End)
From G. C. Greubel, Jan 05 2024: (Start)
T(n, n-k) = T(n, k).
T(n, n-1) = n + 3*(1 - [n=1]) = A178915(n+3), n >= 1.
T(n, n-2) = A051936(n+2), n >= 2.
T(n, n-3) = A051937(n+1), n >= 3.
T(2*n, n) = A028322(n).
Sum_{k=0..n} T(n, k) = A005009(n-2) - (3/4)*[n=0] - (3/2)*[n=1].
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n) - 3*[n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022112(n-2) + 3*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 4*A010892(n) - 3*([n=0] + [n=1]). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 6, 6, 1;
1, 7, 12, 7, 1;
1, 8, 19, 19, 8, 1;
1, 9, 27, 38, 27, 9, 1;
1, 10, 36, 65, 65, 36, 10, 1;
1, 11, 46, 101, 130, 101, 46, 11, 1;
1, 12, 57, 147, 231, 231, 147, 57, 12, 1;
MATHEMATICA
Table[If[n<2, 1, Binomial[n, k] +3*Binomial[n-2, k-1]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
PROG
(Magma) [n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 05 2024
(SageMath)
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
flatten([[A028313(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2024
CROSSREFS
Cf. A178915.
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
More terms from Sam Alexander (pink2001x(AT)hotmail.com)
STATUS
approved