login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028313
Elements in the 5-Pascal triangle (by row).
16
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 19, 19, 8, 1, 1, 9, 27, 38, 27, 9, 1, 1, 10, 36, 65, 65, 36, 10, 1, 1, 11, 46, 101, 130, 101, 46, 11, 1, 1, 12, 57, 147, 231, 231, 147, 57, 12, 1, 1, 13, 69, 204, 378, 462, 378, 204, 69, 13, 1, 1, 14, 82, 273, 582, 840, 840, 582, 273, 82, 14, 1
OFFSET
0,5
FORMULA
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + 3*C(n-2, k-1), with T(0, k) = T(1, k) = 1.
G.f.: (1 + 3*x^2*y)/(1 - x*(1+y)). (End)
From G. C. Greubel, Jan 05 2024: (Start)
T(n, n-k) = T(n, k).
T(n, n-1) = n + 3*(1 - [n=1]) = A178915(n+3), n >= 1.
T(n, n-2) = A051936(n+2), n >= 2.
T(n, n-3) = A051937(n+1), n >= 3.
T(2*n, n) = A028322(n).
Sum_{k=0..n} T(n, k) = A005009(n-2) - (3/4)*[n=0] - (3/2)*[n=1].
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n) - 3*[n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022112(n-2) + 3*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 4*A010892(n) - 3*([n=0] + [n=1]). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 6, 6, 1;
1, 7, 12, 7, 1;
1, 8, 19, 19, 8, 1;
1, 9, 27, 38, 27, 9, 1;
1, 10, 36, 65, 65, 36, 10, 1;
1, 11, 46, 101, 130, 101, 46, 11, 1;
1, 12, 57, 147, 231, 231, 147, 57, 12, 1;
MATHEMATICA
Table[If[n<2, 1, Binomial[n, k] +3*Binomial[n-2, k-1]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
PROG
(Magma) [n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 05 2024
(SageMath)
def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
flatten([[A028313(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2024
KEYWORD
nonn,tabl
EXTENSIONS
More terms from Sam Alexander (pink2001x(AT)hotmail.com)
STATUS
approved