login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280374
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 260", based on the 5-celled von Neumann neighborhood.
4
1, 1, 5, 1, 1, 5, 21, 65, 257, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5, 21, 65, 1, 5
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Empirical g.f.: (1 + x + 5*x^2 + x^3 + 4*x^5 + 16*x^6 + 64*x^7 + 256*x^8 - 256*x^12) / ((1 - x)*(1 + x)*(1 + x^2)). - Colin Barker, Jan 02 2017
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 260; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 01 2017
STATUS
approved