login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Elements in the 5-Pascal triangle (by row).
16

%I #21 Jan 07 2024 02:16:21

%S 1,1,1,1,5,1,1,6,6,1,1,7,12,7,1,1,8,19,19,8,1,1,9,27,38,27,9,1,1,10,

%T 36,65,65,36,10,1,1,11,46,101,130,101,46,11,1,1,12,57,147,231,231,147,

%U 57,12,1,1,13,69,204,378,462,378,204,69,13,1,1,14,82,273,582,840,840,582,273,82,14,1

%N Elements in the 5-Pascal triangle (by row).

%H G. C. Greubel, <a href="/A028313/b028313.txt">Rows n = 0..50 of the triangle, flattened</a>

%F From _Ralf Stephan_, Jan 31 2005: (Start)

%F T(n, k) = C(n, k) + 3*C(n-2, k-1), with T(0, k) = T(1, k) = 1.

%F G.f.: (1 + 3*x^2*y)/(1 - x*(1+y)). (End)

%F From _G. C. Greubel_, Jan 05 2024: (Start)

%F T(n, n-k) = T(n, k).

%F T(n, n-1) = n + 3*(1 - [n=1]) = A178915(n+3), n >= 1.

%F T(n, n-2) = A051936(n+2), n >= 2.

%F T(n, n-3) = A051937(n+1), n >= 3.

%F T(2*n, n) = A028322(n).

%F Sum_{k=0..n} T(n, k) = A005009(n-2) - (3/4)*[n=0] - (3/2)*[n=1].

%F Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n) - 3*[n=2].

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A022112(n-2) + 3*([n=0] - [n=1]).

%F Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 4*A010892(n) - 3*([n=0] + [n=1]). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 6, 6, 1;

%e 1, 7, 12, 7, 1;

%e 1, 8, 19, 19, 8, 1;

%e 1, 9, 27, 38, 27, 9, 1;

%e 1, 10, 36, 65, 65, 36, 10, 1;

%e 1, 11, 46, 101, 130, 101, 46, 11, 1;

%e 1, 12, 57, 147, 231, 231, 147, 57, 12, 1;

%t Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 05 2024 *)

%o (Magma) [n le 1 select 1 else Binomial(n,k) +3*Binomial(n-2,k-1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 05 2024

%o (SageMath)

%o def A028313(n,k): return 1 if n<2 else binomial(n,k) + 3*binomial(n-2,k-1)

%o flatten([[A028313(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jan 05 2024

%Y Cf. A000007, A005009, A010892, A022112, A028275, A028314, A028315.

%Y Cf. A028316, A028317, A028318, A028319, A028320, A028321, A028322.

%Y Cf. A028323, A028324, A028325, A029653, A051472, A051936, A051937.

%Y Cf. A178915.

%K nonn,tabl

%O 0,5

%A _Mohammad K. Azarian_

%E More terms from Sam Alexander (pink2001x(AT)hotmail.com)