login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349176
Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.
4
135, 285, 435, 455, 855, 885, 1185, 1287, 1305, 1335, 1425, 1435, 1485, 1635, 2235, 2275, 2295, 2655, 2685, 2905, 2985, 3105, 3135, 3185, 3311, 3395, 3435, 3555, 3585, 4005, 4035, 4185, 4425, 4785, 4865, 4905, 4995, 5385, 5685, 5805, 5835, 5845, 5925, 6135, 6237, 6335, 6345, 6585, 6675, 6735, 7125, 7155, 7175, 7185
OFFSET
1,1
EXAMPLE
For n = 135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, A003961(135) = 5^3 * 7 = 875, and gcd(135,875) = gcd(240,875) = 5, which is larger than 1, therefore 135 is included in the sequence.
MATHEMATICA
Select[Range[1, 7200, 2], And[#1/#2 == #1/#3, #2 > 1] & @@ {#3, GCD[#1, #3], GCD[#2, #3]} & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA349176(n) = if(!(n%2), 0, my(u=A003961(n), t=gcd(u, n)); (t>1)&&(gcd(u, sigma(n))==t));
CROSSREFS
Intersection of A104210 and A349174, or equally, intersection of A349166 and A349174.
Subsequence of A372567.
Sequence in context: A274434 A325569 A372567 * A342189 A374461 A176313
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2021
STATUS
approved