login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374461
Numbers k such that k and k+1 are both nonsquarefree exponentially odd numbers (A374459).
1
135, 296, 343, 351, 375, 512, 999, 1160, 1375, 1431, 1592, 1624, 2079, 2295, 2375, 2456, 2727, 2943, 3104, 3159, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4616, 4832, 4887, 4913, 5048, 5144, 5319, 5480, 5535, 6183, 6344, 6375, 6655, 6858, 7047, 7263, 7479, 7624
OFFSET
1,1
COMMENTS
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 7, 59, 556, 5539, 55329, 553188, 5531116, 55311354, ... . Apparently, the asymptotic density of this sequence exists and equals 0.005531... .
LINKS
EXAMPLE
135 is a term since both 135 = 3^3 * 5 and 136 = 2^3 * 17 are nonsquarefree exponentially odd numbers.
MATHEMATICA
q[n_] := q[n] = Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, OddQ] && ! AllTrue[e, # == 1 &]]; Select[Range[10000], q[#] && q[# + 1] &]
PROG
(PARI) is1(k) = {my(e = factor(k)[, 2]); for(i = 1, #e, if(!(e[i] %2), return(0))); for(i = 1, #e, if(e[i] >1, return(1))); 0; }
lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
Intersection of A068781 and A367695.
Subsequence of A268335 and A374459.
Sequence in context: A372567 A349176 A342189 * A176313 A372691 A335328
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 09 2024
STATUS
approved