login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274434
Products of three distinct tribonacci numbers > 1.
3
135, 255, 459, 465, 765, 837, 855, 1395, 1539, 1575, 1581, 2565, 2635, 2835, 2895, 2907, 4725, 4743, 4845, 5211, 5301, 5325, 5355, 8685, 8721, 8835, 8925, 9585, 9765, 9795, 9843, 15903, 15975, 16065, 16275, 16405, 17631, 17949, 17955, 18015, 18105, 29295
OFFSET
1,1
COMMENTS
Are these unique among all products of distinct tribonacci numbers (A000213)? (See A274432.)
EXAMPLE
The tribonacci numbers > 1 are 3,5,9,17,31,57,..., so that the trinary products in increasing order are 135, 255, 459, 465, 765,...
MATHEMATICA
r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3];
s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20]
Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
Take[s, 2 z] (* A274432 *)
infQ[n_] := MemberQ[f, n];
ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}];
Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *)
(* Peter J. C. Moses, Jun 17 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 22 2016
STATUS
approved