login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350515
a(n) = (n-1)/3 if n mod 3 = 1; a(n) = n/2 if n mod 6 = 0 or n mod 6 = 2; a(n) = (3n+1)/2 if n mod 6 = 3 or n mod 6 = 5.
3
0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17, 6, 4, 7, 23, 5, 26, 9, 6, 10, 32, 7, 35, 12, 8, 13, 41, 9, 44, 15, 10, 16, 50, 11, 53, 18, 12, 19, 59, 13, 62, 21, 14, 22, 68, 15, 71, 24, 16, 25, 77, 17, 80, 27, 18, 28, 86, 19, 89, 30, 20, 31, 95, 21, 98, 33, 22, 34, 104
OFFSET
0,4
COMMENTS
This is a variant of the Farkas map (A349407).
Yolcu, Aaronson and Heule prove that the trajectory of the iterates of the map starting from any nonnegative integer always reaches 0.
If displayed as a rectangular array with six columns, the columns are A008585, A005843, A016777, A017221, A005408, A017257 (see example). - Omar E. Pol, Jan 02 2022
LINKS
H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, vol. 387, American Mathematical Society, 2005, p. 121.
Emre Yolcu, Scott Aaronson and Marijn J. H. Heule, An Automated Approach to the Collatz Conjecture, arXiv:2105.14697 [cs.LO], 2021, pp. 21-25.
FORMULA
a(n) = (A349407(n+1)-1)/2.
a(n) = 2*a(n-6)-a(n-12). - Wesley Ivan Hurt, Jan 03 2022
EXAMPLE
From Omar E. Pol, Jan 02 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
0, 0, 1, 5, 1, 8;
3, 2, 4, 14, 3, 17;
6, 4, 7, 23, 5, 26;
9, 6, 10, 32, 7, 35;
12, 8, 13, 41, 9, 44;
15, 10, 16, 50, 11, 53;
18, 12, 19, 59, 13, 62;
21, 14, 22, 68, 15, 71;
24, 16, 25, 77, 17, 80;
27, 18, 28, 86, 19, 89;
30, 20, 31, 95, 21, 98;
...
(End)
MATHEMATICA
nterms=100; Table[If[Mod[n, 3]==1, (n-1)/3, If[Mod[n, 6]==0||Mod[n, 6]==2, n/2, (3n+1)/2]], {n, 0, nterms-1}]
(* Second program *)
nterms=100; LinearRecurrence[{0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1}, {0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17}, nterms]
PROG
(Python)
def a(n):
r = n%6
if r == 1 or r == 4: return (n-1)//3
if r == 0 or r == 2: return n//2
if r == 3 or r == 5: return (3*n+1)//2
print([a(n) for n in range(70)]) # Michael S. Branicky, Jan 02 2022
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Jan 02 2022
STATUS
approved