Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 06 2020 23:27:56
%S 1,6,10,27,14,60,22,108,75,84,26,270,34,132,140,405,38,450,46,378,220,
%T 156,58,1080,147,204,500,594,62,840,74,1458,260,228,308,2025,82,276,
%U 340,1512,86,1320,94,702,1050,348,106,4050,363,882,380,918,118,3000,364,2376,460,372,122,3780,134,444,1650,5103,476,1560
%N a(n) = A000005(n) * A003961(n), where A003961 is the prime shift towards larger primes, and A000005 gives the number of divisors of n, and also of A003961(n).
%C Dirichlet convolution of A003961 with itself.
%C Sequence is not injective, as it has duplicate values, for example: a(162) = a(243) = 18750. See also comments in A336475.
%H Antti Karttunen, <a href="/A336845/b336845.txt">Table of n, a(n) for n = 1..16384</a>
%H Antti Karttunen, <a href="/A336845/a336845.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F Multiplicative with a(prime(i)^e) = (e+1) * prime(1+i)^e.
%F a(n) = A000005(n) * A003961(n).
%F a(n) = A038040(A003961(n)).
%F a(n) = A336841(n) + A003973(n).
%F a(n) is odd if and only if n is a square.
%o (PARI)
%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A336845(n) = (numdiv(n)*A003961(n))
%o (PARI) A336845(n) = { my(f = factor(n)); prod(i=1, #f~, (1+f[i,2]) * (nextprime(1+f[i, 1])^f[i,2])); };
%o (PARI) A336845(n) = sumdiv(n,d,A003961(d)*A003961(n/d));
%Y Cf. A000005, A000203, A000290, A003961, A038040, A336475.
%Y Cf. also A336841, A336846 [= gcd(a(n),A003973(n))], A336847, A336848.
%K nonn,mult
%O 1,2
%A _Antti Karttunen_, Aug 06 2020