OFFSET
1,1
COMMENTS
The statement "a(n) >= 0 for n >= 1" is equivalent to Goldbach's conjecture (cf. Phong, Dongdong, 2004, Theorem (a)).
Records: 6, 10, 26, 90, 200, 282, 522, 942, 2566, 5268, 7280, 43356, 54024, ..., . - Robert G. Wilson v, Feb 28 2018
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1205
Bui Minh Phong and Li Dongdong, Elementary problems which are equivalent to the Goldbach's Conjecture, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 33-37.
Wikipedia, Goldbach's conjecture
MAPLE
N:= 100: # to get a(1)..a(N)
P:= [seq(ithprime(i), i=1..N+1)]:
s:= proc(n, k0) local k;
for k from max(k0, P[n]+1) by 2 do
if andmap(not(isprime), map(t -> k - t, P[1..n])) then return k
fi
od
end proc:
K[1]:= 6: A[1]:= 6:
for n from 2 to N do
K[n]:= s(n, K[n-1]);
A[n]:= K[n]- P[n+1]+3;
od:
seq(A[n], n=1..N); # Robert Israel, Mar 01 2018
MATHEMATICA
f[n_] := Block[{k, x = 2, q = Prime@ Range@ n}, x += Mod[x, 2]; While[k = 1; While[k < n +1 && CompositeQ[x - q[[k]]], k++]; k < n +1, z = x += 2]; x - Prime[n +1] +3]; Array[f, 47] (* Robert G. Wilson v, Feb 26 2018 *)
PROG
(PARI) s(n) = my(p=prime(n), x); if(p==2, x=4, x=p+1); while(1, forprime(q=1, p, if(ispseudoprime(x-q), break, if(q==p, return(x)))); x=x+2)
a(n) = s(n)-prime(n+1)+3
CROSSREFS
KEYWORD
look,nonn
AUTHOR
Felix Fröhlich, Jan 25 2018
STATUS
approved