login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A298736
a(n) = s(n) - prime(n+1)+3, where s(n) = smallest even number x > prime(n) such that the difference x-p is composite for all primes p <= prime(n).
1
6, 10, 26, 90, 88, 84, 82, 200, 282, 280, 522, 518, 516, 512, 942, 936, 934, 928, 924, 922, 2566, 2562, 2556, 2548, 2544, 2542, 5268, 5266, 5262, 5248, 5244, 5238, 5236, 7280, 7278, 7272, 7266, 7262, 7256, 43356, 43354, 43344, 43342, 43338, 43336, 43324, 54024
OFFSET
1,1
COMMENTS
The statement "a(n) >= 0 for n >= 1" is equivalent to Goldbach's conjecture (cf. Phong, Dongdong, 2004, Theorem (a)).
Records: 6, 10, 26, 90, 200, 282, 522, 942, 2566, 5268, 7280, 43356, 54024, ..., . - Robert G. Wilson v, Feb 28 2018
LINKS
Bui Minh Phong and Li Dongdong, Elementary problems which are equivalent to the Goldbach's Conjecture, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 33-37.
FORMULA
a(n) = A152522(n)-A000040(n+1)+3 for n > 0.
MAPLE
N:= 100: # to get a(1)..a(N)
P:= [seq(ithprime(i), i=1..N+1)]:
s:= proc(n, k0) local k;
for k from max(k0, P[n]+1) by 2 do
if andmap(not(isprime), map(t -> k - t, P[1..n])) then return k
fi
od
end proc:
K[1]:= 6: A[1]:= 6:
for n from 2 to N do
K[n]:= s(n, K[n-1]);
A[n]:= K[n]- P[n+1]+3;
od:
seq(A[n], n=1..N); # Robert Israel, Mar 01 2018
MATHEMATICA
f[n_] := Block[{k, x = 2, q = Prime@ Range@ n}, x += Mod[x, 2]; While[k = 1; While[k < n +1 && CompositeQ[x - q[[k]]], k++]; k < n +1, z = x += 2]; x - Prime[n +1] +3]; Array[f, 47] (* Robert G. Wilson v, Feb 26 2018 *)
PROG
(PARI) s(n) = my(p=prime(n), x); if(p==2, x=4, x=p+1); while(1, forprime(q=1, p, if(ispseudoprime(x-q), break, if(q==p, return(x)))); x=x+2)
a(n) = s(n)-prime(n+1)+3
CROSSREFS
KEYWORD
look,nonn
AUTHOR
Felix Fröhlich, Jan 25 2018
STATUS
approved