login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152522
a(n) is the least even number such that if p_i is the i-th prime then a(n)-p_i, i=1..n, are composite numbers.
6
6, 12, 30, 98, 98, 98, 98, 220, 308, 308, 556, 556, 556, 556, 992, 992, 992, 992, 992, 992, 2642, 2642, 2642, 2642, 2642, 2642, 5372, 5372, 5372, 5372, 5372, 5372, 5372, 7426, 7426, 7426, 7426, 7426, 7426, 43532, 43532, 43532, 43532, 43532, 43532
OFFSET
1,1
COMMENTS
Conjecture (A. Granville, H. te Riele and J. van de Lune, 1989) Let, for even N, p=p(N) be the least prime such that N-p is prime as well. Then p(N)=O((log(N))^2log(log(N))). [Vladimir Shevelev, Dec 08 2008]
It is conjectured that a(n) >= prime(k+1) + 3. See Conjecture C p. 2 in Phong & Dongdong. - Michel Marcus, Aug 02 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Andrew Granville, J. Van de Lune, and Herman te Riele, Checking the Goldbach Conjecture on a vector computer, Number Theory and Applications (1989), pp. 423-434.
Bui Minh Phong, Li Dongdong, Elementary problems which are equivalent to the Goldbach’s conjecture, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 33-37.
MATHEMATICA
Bag={};
f[n_]:=NestList[NextPrime, 2, n];
GoldbachTest[n_?EvenQ, p_List]:=Block[{m=Length[p], i=1}, While[i<=m&&CompositeQ[n-p[[i]]], i+=1]; If[i>m, {0, 0}, {#, n-#}&[p[[i]]]]];
Do[n=4; While[(GoldbachTest[n, f[j]])!={0, 0}, {n=n+2}]; AppendTo[Bag, n], {j, 0, 44}]; Bag (* Gilmar Rodriguez Pierluissi, Aug 23 2018 *)
PROG
(PARI) a(n)=my(P=prime(n)); forstep(k=6, 9e99, 2, forprime(p=3, P, if(isprime(k-p), next(2))); return(k)) \\ Charles R Greathouse IV, Sep 04 2011
CROSSREFS
Cf. A025018.
Sequence in context: A015801 A073245 A119626 * A096356 A065992 A263587
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Dec 06 2008
STATUS
approved